Palladium-Catalyzed Aldol-Type Condensation by Enol Esters with SnCl₂

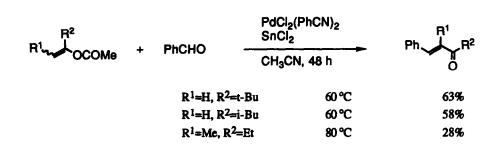
Yoshiro Masuyama,* Tatsuya Sakai, and Yasuhiko Kurusu

Department of Chemistry, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102, Japan

Key Words: Aldol-type condensation; enol ester; palladium; tin(II) chloride.

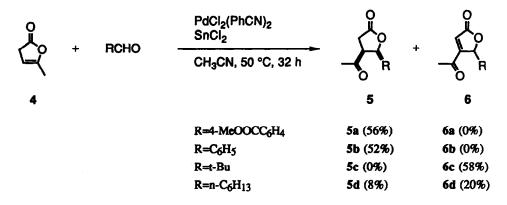
Abstract: Using PdCl₂(PhCN)₂-SnCl₂, enol esters caused aldol-type condensation with aldehydes at 50°C in acetonitrile to produce (E)- α , β -unsaturated carbonyl compounds. Cyclic enol ester such as α -angelicalactone also reacted with aldehydes under the same conditions to afford γ -substituted β -acetyl- γ -butyrolactones and/or 5-substituted 4-acetyl-2(5H)-furanones.

Enol esters, which are easily prepared and are tractable as nucleophiles, can be applied to C-C bond formation under acidic conditions¹ or neutral conditions.² However, the aldol-type condensation of simple enol esters such as available isopropenyl acetate (1) with aldehydes except for benzaldehyde has not yet been developed. Here we report that PdCl₂(PhCN)₂-SnCl₂ reagent can be utilized in the aldol-type condensation of 1 with aldehydes.


The addition reaction of 1 to 4-methoxycarbonylbenzaldehyde (2, R=4-MeOOCC6H4) with SnCl₂ was investigated under various reaction conditions, as summarized in Table 1. The addition reaction occurred at 50 °C in acetonitrile without PdCl₂(PhCN)₂ to give 4-(4-methoxycarbonylphenyl)-3-buten-2-one (3, R=4-MeOOCC₆H₄) (entry 1). Then, the addition of a catalytic amount of PdCl₂(PhCN)₂ accelerated the reaction (entry 3). In the absence of SnCl₂, PdCl₂(PhCN)₂ exhibited no catalytic activity. In the presence of PdCl2(PhCN)2, use of a catalytic amount (4 mol%) of SnCl2 did not cause the reaction and use of an amount of SnCl₂ equimolar to that of benzaldehyde lowered the yield of 3 (R=4-MeOOCC₆H₄, 50 °C, 48 h, 33%). The addition of phosphine or phosphite ligands inhibited the catalytic activity of palladium complex (entries 5-7). Solvents such as DMF, DMI, and THF were not effective for the reaction under the same conditions as those in DMSO shown in entry 8. A major product in 1,2-dichloroethane was 4-acetoxy-4-(4-methoxycarbonylphenyl)butan-2-one (49%), and a mixture of 3 (R=4-MeOOCC₆H₄, 15%) and 4-chloro-4-(4-methoxycarbonylphenyl)butan-2-one (31%) was obtained in dichloromethane. The addition reaction in refluxing dichloromethane did not proceed in the absence of either PdCl2(PhCN)2 or SnCl2. The addition reaction did not occur at 30 °C (entry 2), and many undetermined by-products were produced at 80 °C (entry 4). This reaction might be promoted either by the coordination of carbonyl oxygen of 2 (R=4-MeOOCC₆H₄) to Pd(SnCl₃)₂(PhCN)₂ derived from PdCl₂(PhCN)₂-SnCl₂³ or by the oxidative addition to palladium complex (or SnCl₂), accompanied by the cleavage of an acyl-oxygen bond of $1,^4$ followed by the transmetalation of palladium enolate into tin enolate.^{5,6}

Palladium-catalyzed nucleophilic addition of 1 to several carbonyl compounds with SnCl₂ proceeded in acetonitrile to produce (E)-3-buten-2-one derivatives 3 selectively, in contrast with the reaction of 1 and benzaldehyde with Lewis acids.^{1a,7} The results are summarized in Table 1. Arenecarbaldehydes were converted to 4-aryl-3-buten-2-ones in good yields (entry 3 and 9~18). However, alkanecarbaldehydes such as heptanal and cyclohexanecarbaldehyde do not contribute so much to the addition reaction. Alkanecarbaldehydes bearing functional groups such as C-C double bond and aryl can be employed (entries 20 and 21).

I	+ RCH(PdCl ₂ (PhCN) ₂		R R		
			SnCl ₂ , CH ₃ CN		O O	
1 2				3		
entry	R	ligand ^b	temp (°C)	time (h)	3, yield (%) ^c	
1	4-McOOCC6H4		50	72	45 ^d	
2	4-McOOCC6H4		30	48	trace	
3	4-McOOCC6H4		50	33	88	
4	4-McOOCC6H4		80	48	56	
5	4-McOOCC6H4	PBu ₃	50	72	48	
6	4-McOOCC6H4	PPh ₃	50	72	28	
7	4-McOOCC6H4	P(OMe) ₃	50	72	35	
8	4-McOOCC6H4		50	48	28 ^e	
9	C ₆ H ₅		50	48	58	
10	3,4-(CH ₂ O ₂)C ₆ H ₃		50	40	78	
11	2-McOC6H4		50	30	79	
12	3-McOC6H4		50	48	63	
13	4-MeOC6H4		50	33	68	
14	2-O2NC6H4		50	42	61	
15	4-O2NC6H4		50	40	82	
16	4-NCC6H4		50	35	92	
17	4-C1C6H4		50	33	83	
18	3-OHCC6H4		50	40	53f	
19	PhCH=CH	***	50	35	28	
20	PhCH ₂ CH ₂		50	32	18	
21	CH ₂ =CH(CH ₂) ₈		50	30	32	


Table 1. Palladium-Catalyzed Aldol-Type Condensation of 1 and 2 with SnCl2^a

(a) The addition reaction of 1 (3 mmol) to 2 (1 mmol) with PdCl₂(PhCN)₂ (0.02 mmol) and SnCl₂ (3 mmol) was carried out in solvent (5 ml) under a nitrogen atmosphere. (b) Ligand (0.04 mmol) was used. (c) Isolated yields based on 2. (d) No Pd cat. was added. (e) DMSO as a solvent was used. (f) 1,3-Bis(3-oxo-1-butenyl)benzene was obtained.

Scheme 1

Scheme 2

As shown in Scheme 1, some enol esters also reacted with benzaldehyde under the similar conditions to produce the corresponding (E)- α , β -unsaturated ketones. The reactivity of an internally olefinic ester such as 1-ethyl-1-propenyl acetate is lower than that of terminally olefinic esters.

A cyclic enol ester, α -angelicalactone 4, which had been applied to the condensation with aldehydes in the presence of Lewis acids,^{1b} reacted with aldehydes under the same conditions as those of the reaction of 1 to afford syn γ -substituted β -acetyl- γ -butyrolactones 5⁸ and/or 5-substituted 4-acetyl-2(5H)-furanones 6⁹ (Scheme 2). γ -Butyrolactones 5a and 5b were only obtained in cases of arenecarbaldehydes, and furanones 6c and 6d were produced in cases of alkanecarbaldehydes. Furanone 6 should be produced via the formation of 5 (aldol-type reaction), followed by its dehydrogenation in the presence of PdCl₂(PhCN)₂-SnCl₂ and 4.¹⁰

REFERENCES AND NOTES

- For aldol-type reaction with Lewis acid, see: (a) Mukaiyama, T.; Izawa, T.; Saigo, K. Chem. Lett. 1974, 323~326. (b) Mukaiyama, T.; Hanna, J.; Inoue, T.; Sato, T. Chem. Lett. 1974, 381~382. (c) Izawa, T.; Mukaiyama, T. Chem. Lett. 1975, 161~164.
- For palladium-catalyzed arylation, vinylation, and allylation of ketone with Bu₃SnOMe, see: (a) Kosugi, M.; Hagiwara, I.; Sumiya, T.; Migita, T. J. Chem. Soc., Chem. Commun. 1983, 344~345. (b) Kosugi,

M.; Hagiwara, I.; Migita, T. Chem. Lett. 1983, 839~840. (c) Tsuji, J.; Minami, I.; Shimizu, I. Tetrahedron Lett. 1983, 24, 4713~4714.

- 3. Murray, T. F.; Norton, J. R. J. Am. Chem. Soc. 1979, 101, 4107~4119.
- 4. For oxidative addition of acyl-oxygen bond to metal complex, see: Yamamoto, T.; Ishizu, J.; Kohara, T.; Komiya, S.; Yamamoto, A. J. Am. Chem. Soc. 1980, 102, 3758~3764.
- 5. The oxidative addition of 1 to palladium seems to have higher possibility than the coordination of 2 to Pd(SnCl₃)₂(PhCN)₂, since dimethyl acetals of 2 do not react with 1 under the same conditions as those shown in Table 1, entry 3. The reaction of 1 with acetals is promoted by Lewis acids. Benzaldehyde dimethyl acetal is more active than benzaldehyde. See ref. 1a.
- For the preparation of tin enolates, see: (a) Mukaiyama, T. Pure Appl. Chem. 1986, 58, 505~512. (b) Mukaiyama, T.; Iwasawa, N. Nippon Kagaku Kaishi 1987, 1099~1107. (c) Pereyre, M.; Quintard, J.-P.; Rahm, A. Tin in Organic Synthesis; Butterworths: London, 1987; pp. 286~296.
- 4-Acetoxybutan-2-one, 4-chlorobutan-2-one, and 4-hydroxybutan-2-one derivatives, which had been
 prepared by the reaction of 1 and benzaldehyde with Lewis acids,^{1a} were not detected in the reaction with
 PdCl₂(PhCN)₂-SnCl₂ in acetonitrile.
- The structure of syn-lactones 5a and 5b was confirmed by the coupling constant (J=7.6 and 8.7 Hz, respectively) between β- and γ-proton on ¹H NMR observation; see: Okuda, Y.; Nakatsukasa, S.; Oshima, K.; Nozaki, H. Chem. Lett. 1985, 481~484.
 5b: IR (KBr) 3066, 3035, 3006, 2929, 1773, 1717, 1497, 1458, 1419, 1363, 1300, 1270, 1174, 1016, 956, 765, 701; ¹H NMR (CDCl₃) & 2.16 (s, 3H), 2.86 (dd, J=19.7, 10.4 Hz, 1H), 2.96 (dd, J=19.7, 10.4 Hz, 1H), 3.51 (dt, J=10.4, 8.7 Hz, 1H), 5.57 (d, J=8.7 Hz, 1H), 7.30~7.43 (m, 5H); MS (relative intensity) m/z 204 (M⁺, 50), 176 (22), 162 (92), 161 (100), 147 (66), 133 (26), 115 (21), 105 (59), 98 (43), 77 (28), 71 (26), 70 (20), 57 (36), 55 (47); HRMS calcd for C₁2H₁₂O₃: 204.0786, found: 204.0787.
- 9. 6c: IR (neat) 2964, 2872, 1785, 1766, 1644, 1478, 1465, 1442, 1383, 1366, 1284, 1233, 1170, 1153, 1050, 1026, 928, 745 cm⁻¹; ¹H NMR (CDCl₃) δ 1.20 (s, 9H), 2.11 (s, 3H), 5.98 (s, 1H), 6.57 (s, 1H); MS (relative intensity) m/z 182 (M⁺, 16), 181 (15), 142 (38), 139 (32), 126 (45), 125 (33), 124 (92), 98 (35), 97 (20), 57 (100); HRMS calcd for C₁₀H₁₄O₃: 182.0942, found: 182.0930.
- 5c, derived from 4 and pivalaldehyde with Lewis acid, ^{1b} was transformed into 6c at 50 °C in acetonitrile in the presence of PdCl₂(PhCN)₂-SnCl₂ and 4. Dehydrogenation of 5b did not proceed under the same conditions as those of 5c but at 80 °C for 8 h (82%). For palladium-catalyzed dehydrogenation of 1,4diketone, see: (a) Theissen, R. J. J. Org. Chem. 1971, 36, 752~757. (b) Kirschke, K.; Muller, H.; Timm, D. J. Prakt. Chem. 1975, 317, 807.

(Received in Japan 1 August 1992)